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ABSTRACT 

In this paper, we discuss how Bayesian networks can be used to develop automated situation-assessment 
tools suitable for use as decision aids in a command and control system.   Inevitably, the introduction of a 
new technology raises a number of validation, systems integration and human-factors questions. Those 
issues pertinent to Bayesian network decision aids are identified and their implications discussed. We then 
describe in detail the implementation of such a system capable of providing Combat-ID and Threat 
Assessment advisories in the naval anti-air warfare role and its assessment within a realistic (synthetic) 
human-in-the-loop experiment.  We discuss the experimental system, the experimental design and protocol 
and the experimental results. In a controlled experiment using 14 subjects with relevant military 
experience we found that the Bayes’ net decision aid system was preferred by the majority of the 
experimental subjects and led to a number of operator performance improvements which could directly 
contribute to improved operational effectiveness. 

1.0 INTRODUCTION 

Achieving shared situation awareness and self-synchronisation is a stated objective of Network Centric 
Warfare and its UK equivalent, Network Enabled Capability [1,2]. This requires networking of sensors 
and users across the battlespace, which will undoubtedly increase the amount of information available to 
decision makers. However, increasing the volume of information may not necessarily lead to better 
decisions. Operators may become overwhelmed with the task of filtering and assessing data from different 
sources. Therefore it may be necessary to deploy tools for decision support, to help operators assimilate 
information and make better decisions, faster. 

Decision making involves processing uncertain information. It requires the assessment of the current state 
of the world (which is itself uncertain) and the projection of that state forward in time, so that the risks and 
rewards of different courses of action can be assessed. 

In this paper, we consider tools to assist this “situation assessment” task, which we define as the process of 
placing observations in context with existing (i.e. prior) knowledge. Such a tool must be capable of 
integrating multiple sources of information of different types (sensor data, historical data, intelligence 
reports, etc) and dealing with the uncertainty inherent in all data sources. It must also be capable of 
incorporating relevant prior knowledge into the process. In recent years Bayesian probability theory, 
which provides a consistent framework for reasoning with uncertain data [4], has been advocated as a 
suitable tool for building this type of system, and a number of concept demonstrations have been 
constructed [14,15,16,17,18]. 
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However, there is a large technology gap between a concept demonstration and a deployable system. 
Bridging the gap requires the development of detailed concepts of use; understanding the requirements of 
users, their modes of interaction with the system; and addressing the issues of system validation, 
verification and integration.    

One could attempt to study these issues in the abstract. However, it is our belief that only by building and 
experimenting with a representative system can the true systems development and operational issues be 
identified and potential solutions to these issues found more quickly.  In this paper, we report how we 
have constructed a decision support tool for situation assessment and conducted an experimental 
assessment of its utility in a realistic (though simulated) setting. In Section 2 we describe how Bayesian 
networks can be used for the situation assessment task; in Section 3 we highlight specific system 
implementation issues and identify some of their potential solutions; and in Section 4 we describe the 
experiment, its design and the results. We summarise our progress and successes and discuss where future 
effort should be deployed in Section 5.  

2.0 SITUATION ASSESSMENT USING BAYESIAN NETWORKS 

BAE Systems have been developing decision support systems designed to help an operator achieve 
“situation awareness” by rapidly and consistently assimilating uncertain data from multiple sources i.e. by 
producing an automated “situation assessment” for an operator to use. As noted above, this process must 
deal with the uncertainty inherent in information sources arising from data collection and allow prior 
knowledge (e.g. encyclopaedic knowledge of platform capabilities, expert knowledge of threat, etc) to be 
incorporated into the decision process.  

Bayesian probability theory provides a consistent mathematical framework for representing and 
manipulating uncertainty, and allows prior knowledge to be utilised in inference [4]. Hence we believe it 
is a natural choice for modelling the situation assessment process. 

Bayesian networks provide a computationally tractable method of implementing Bayesian probability 
theory [5, 6].  In recent years, they have become the de-facto language for expressing problems in 
probability and statistics. A Bayesian network uses a graph to specify relationships between different 
variables, which can be exploited to provide inference efficient algorithms. Bayesian networks can be used 
to express and generalise many common inference tasks. For example Figure 1 shows the structure of 
networks commonly used in level 1 data-fusion applications [12, 13]: (a)  Naïve Bayes classifier (used in 
classification and data mining); (b) a Kalman filter (used in tracking and control); and (c) a feed-forward 
neural network (used for regression and classification). 
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Figure 1: The structure of Bayesian networks for (a) a naïve Bayes classifier, used to classify a 
variable ‘x’ using a set of observations z1,…,zN, (b) a Kalman filter, used to estimate a state 

variable x over time, using a sequence of observations z and (c) a feedforward neural network, 
showing the relation of training inputs and outputs to the weights. 

Bayesian networks can also be applied to more sophisticated or “high-level” inference or fusion tasks. By 
exploiting the structure of the graph as a cause and effect model of a domain, it is possible to build a 
“knowledge base” that can be used as a (probabilistic) expert system. In the civil domain, Bayesian 
networks have been applied to a wide range of applications that are effectively civil analogues of the 
military “situation assessment” problem. These include medical diagnosis [7], fault finding [8, 9], data 
mining [10] and network intrusion detection [11]. Following the successful application of these techniques 
in the civil domain, they are also beginning to be exploited in military applications that include situation 
assessment and threat assessment [14 – 17] and effects based operations [18].  

High-level fusion applications necessarily require domain specific models. In our experience (and in the 
experience of others [21]), constructing useful domain specific models is a significant challenge. We have 
found it most useful to build models of individual entities in the battlespace. This is because the domain is 
relatively small (the number of variables to describe an entity is small compared to the number to describe 
a whole battlespace), closed (i.e. each entity uses a fixed number of variables); and contains a manageable 
number of hypotheses (for example hypotheses about Hostility, ID and Threat). However, it is a domain 
containing non-trivial inference, for example inferring ID and Threat using data present in a command and 
control system. It also provides a stepping-stone to more sophisticated applications, for example inference 
about the behaviours of groups of entities.  

Figure 2 shows a simplified model for assessing Hostility, ID and Threat by placing sensor data in context 
with historical data and expert knowledge. The model is a simplified version of those used in the 
experiments, described in Section 4. The model combines:  

• Track Data extracted from a tracking system; 

• ID Data such as Automatic Target Recognition (ATR) and Electronic Surveillance measures 
(ESM) information that can be fused within the Bayesian paradigm;  
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• Intelligence Information about intent. Other intelligence such as known force dispositions can 
also be encoded; 

• Historical Data: knowledge of the performance envelope of a platform performance is used to 
provide weak evidence for ID; 

• Spatial Context Information: knowledge of air lanes (and potential exclusion zones) is used to 
inform hostility;  

• Expert knowledge: is used to combine different factors into a threat assessment.  

Note that the model contains a concept that is inherently abstract: Threat. In this respect, the model 
captures a domain expert’s subjective knowledge of how attack profile and ID should be interpreted in a 
situation assessment. Note also that the model has an underlying “tree-like” structure at its heart, 
reminiscent of the Naïve Bayes Classifier of Figure 1(a). This is to be expected: “sensor” readings (ESM, 
ATR, Speed, etc) will only be correlated via the ID or class of the object under inspection. In more 
realistic models, sensor performance may be correlated via other contextual nodes relating to 
environmental factors (e.g. prevailing weather conditions that effect multiple sensors in different ways). 
This tree-like structure allows individual sub-components of the network (for example ATR and ID 
Platform) to be designed and verified independently of the rest of the network. 

Models of this type can be constructed using Subject Matter Experts (SMEs) in an iterative knowledge 
capture process. Typically one or more domain experts construct a cause and effect model of the domain 
(i.e. a model where the conditioning is interpreted causally) which is then parameterised using data (where 
available) or further knowledge elicitation.  Once constructed, data can be used to refine estimates of 
parameters or even structure. 

 
Figure 2: A simplified model of a Bayesian network used for Combat ID and threat assessment 

in our experiments    
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The model can be used in a number of ways to extract (inferred) information about the Hostility, ID 
Platform and Threat variables. Since, in a Bayesian network, there is no concept of “inputs” or “outputs”, 
inferences can always be made regardless of the number of observations available at the time. This is done 
by conditioning the model with available evidence (i.e. observation and background data) and running 
inference algorithms of different types. For example, for the model shown in Figure 2, evidence for Speed, 
Altitude and Heading can be extracted from an analysis of track data; evidence for (Identification Friend 
or foe (IFF), ATR and ESM can be obtained from appropriate sensors systems; evidence for Airlane can 
be extracted from a combination of track data, Air Combat Order (ACO) and Air Tasking Order (ATO) 
data. There is a wide choice of inference algorithms that allow different types of question to be answered 
by a model. For example, for the model shown in Figure 2, we may be interested in inferring: 

• The probability of any ID or Hostility hypothesis, given the evidence (e.g. P (ID Platform=UAV | 
Evidence) = 0.95); 

• The most likely ID or Hostility of the track (e.g. ID Platform=UAV); 

• The most important piece of evidence supporting ID hypothesis (e.g. ATR is the most important 
piece of evidence – the one that makes the largest difference to the data likelihood); 

• The measurement that will maximise the discriminative power of the model (e.g. use ATR 
system). 

Which inference algorithm to use is dependent on the role of the model in a decision support task, which 
in turn depends on the concept of use of the tool.  In summary, we believe Bayesian networks have an 
important role to play in building tools for situation assessment, as they provide a consistent framework 
for handling uncertainty, can be used to constructed rich domain models that can incorporate prior (expert) 
knowledge, and they can be used to consistently infer different types of information (e.g. P(ID), most 
likely ID, etc) from a common knowledge base. However, the usefulness of such tools will always depend 
on the quality of the underlying model, it suitability for the task, its concept of use, and the way in which it 
is integrated into the system. 

2.1 System Issues 
In moving from a bench-top technology demonstration or concept to a more realistic system 
demonstration a number of implementation issues must be addressed, which we discuss in this section. 
These include: 

• Validation and verification of models; 

• Integration with existing information systems and network technologies; and 

• Interaction with human operators and existing military processes and doctrines. 

2.1.1 Validation and verification of models 

Validating any knowledge based system is challenging. However, the causal structure of a Bayesian 
network can be exploited in the validation process. Groups of nodes can be validated independently once 
the overall structure has been determined, providing data is available for all nodes in a group. For 
example, consider the ATR and ID Platform nodes of the model in Figure 2. These two nodes constitute a 
probabilistic ID system, which can be objectively validated independently of the rest of the model, 
providing suitable data are available. Of course, the parameters of the model can also be learned from 
data, using standard probabilistic learning algorithms.  

To validate the model as a whole we would generally need access to three types of data: sensor data; 
encyclopaedic data and expert derived data. Sensor models can be incorporated directly into the model, 
where validated models are available. Otherwise they can be validated given sufficient statistical data. 
Encyclopaedic data, such as the performance envelopes of platforms, can be used, for example to validate 
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the relationships between ID and observed behaviours. However, ‘expert derived’ data presents a slightly 
more difficult task. Typically we might want to infer a subjective quantity such as the level of threat a 
platform presents. In this case, we would advocate isolating the smallest group of variables that influence 
the subjective measure (i.e. the node’s Markov blanket), and generate a series of samples that can be 
reviewed, and if necessary updated, by a quorum of experts. 

2.1.2 Integration with information systems and network technologies 

Current state of the art network technologies such as C2IEDM [19] and Link 16 [20] encode limited 
notions of uncertainty, particularly with respect to ID hypotheses.  Data in the system is presumed to be 
true, which manifests itself in procedures for manual conflict resolution.  

A probabilistic approach would allow more sophisticated management of the uncertainty associated with 
each piece of information. We would argue that this represents a truer representation of the state of 
knowledge we have about the world which, if properly communicated, may prevent decisions being taken 
on information that is incorrect (e.g. potentially reducing Blue on Blue incidents).  

Clearly, there is a requirement to understand how probabilistic information is best used, but also how it 
can operate along side, or be integrated with legacy information systems that have no notion of 
uncertainty. 

2.1.3 Interaction with the human operators 

The level of interaction between the human and the decision support system depends on the operator’s 
requirements, his current ability to assimilate information and the level of automation provided by the 
system. These are dependent on the task being undertaken.  

Using a probabilistic approach to decision support, there are a number of alternatives for presenting 
information, including:  

• Present only the most likely hypothesis. This has the advantage that only minimal changes will be 
required to existing operator interfaces. However, the danger exists that the information will be 
treated as absolute truth.  

• Present probabilistic information on relevant hypotheses (e.g. hostility and identity). This would 
require operators to be trained to interpret this information. It may lead to large amounts of data 
being displayed and increase the potential that the operator is distracted. 

• Present probabilistic information on relevant hypotheses and allow the operator to interact with 
the model. For example, the most likely hypothesis could be presented with a list of corroborative 
evidence to review using a “what-if” analysis. Again, this would require sufficient operator 
training, and the development of sophisticated interfaces which would represent a large departure 
from current practise. 

3.0 EXPERIMENTAL INVESTIGATION 

3.1 Overview 
An experimental investigation, funded by a BAE Systems internal research and development programme, 
was undertaken to allow some of the system issues to be explored in a realistic environment, and the 
maturity of the technology to be assessed. The study (referred to as the ‘Shared Situation Awareness’ 
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(SSA) experiment) was aimed at assessing the potential operational advantages to be accrued from the use 
of a Bayesian network (BN) based decision support system in a naval command and control task.  

The philosophy of operation for the decision support system was that it should act as an adjunct to the 
presentation of the existing data within a Combat Management System (CMS).  The system was intended 
to act in an advisory rather than fully automated role to assist the human operator to perform his task, not 
to replace him. 

The decision support system used was based on a Combat-ID / Threat Assessment network similar to 
example shown in Figure 2 but which contained a ‘richer model’, with a different structure, and more 
variables.  The model was configured using expert knowledge gathered from personnel with Naval and 
Air-Force air picture compilation expertise together with extensive scenario analysis based on the DoDAF 
framework. 

3.2 Implementation of Concept 
The BN model is only a small component of the experimental system. The other components including the 
Human machine interface (HMI), scenario generation, data marshalling and processing are shown 
schematically in Figure 3.  

DIS Network

SSA System

SSA

Track 
Generator

Event 
Generator

HMI

DIS Interface

Scenario (DIS Generator)
 

Figure 3 Experimental Configuration 
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Scenario information was propagated using a DIS protocol network. Scenarios were generated using VR 
ForcesTM, and logged for later replay.   

The tracking module reads ground truth from the DIS interface and simulates the tracking of entities, 
according to the distribution of platforms and associated sensors in the scenario.  

The event generator simulates the generation of all non-track data used in the scenario (i.e. intelligence 
reports, analysis of ACO / ATO data (e.g. air-lanes), etc). It works by reading ground truth data from the 
DIS network, and applying multiple filters, one for each element of the non-track data in the system. For 
example, an “Airlane event” would be triggered by analysis of the position of each entity and all air-lanes, 
resulting in a distribution over air lane occupation for each track. This mechanism was also used to inject 
all scenario specific events via a configuration file. 

The SSA component contains a track management module that manages all track data, the event data and 
their correlation. This is used to build an “evidence” vector for each entity which is input to a generic BN 
inference module that is configured via an XML file.  The SSA module also manages the interface with 
the HMI, a specially modified version of a Naval Combat Management System (CMS) developed by BAE 
Systems Insyte organisation, known as the “Common Naval System” (CNS) see figure 4. All state 
information was stored within the SSA module, to minimise the modifications necessary to the CNS. 

 
Figure 4: Experimental Interface 

3.2.1 Human Machine Interface  

The existing human machine interface (HMI) of the CNS command system was modified to facilitate the 
communication between the human operator and the SSA system. The primary means of communication 
was via the implementation of a split symbology convention. Information was also communicated via the 
track label, and the main tote display known as the Vehicle Data Readout (VDR).  
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Figure 5: Split Symbology and Track Labels 

The symbology, illustrated in Figure 5, is an adaptation of the Mil Std 2525B symbol set, which was 
specifically chosen because of its symmetry.  The left half of the symbol shows the status, in terms of the 
hostility level that the track currently possess within the command system.  The right half of the symbol 
indicates a suggested change to that status indicated by the BN decision support system (known as SSA). 
In the case shown in Figure 5, the system currently has the entity classified as an unknown air track, 
(normally a full yellow cloud). The SSA is suggesting to the user that it should be reclassified as a hostile 
(red “house” shape) based on its characteristics and behaviour. 

Recommendations for platform type (the ID Platform variable in the model) are communicated by the icon 
in the centre of the symbol.  In the example shown the BN’s suggestion is that the track should be 
reclassified as a military fixed wing aircraft. Finally, an additional field was added to the track label (the 
‘SSA Recommendation Pending’ symbol) to indicate that the SSA had made an assessment of the track 
which the operator had not yet responded to.    

The operator was able to directly accept or reject the SSA’s hostility and track ID recommendations via 
various means built into the HMI.   In the event of an operator rejection the system would not re-advise 
him until a further change of state in the classification was evident.    

Figure 6 shows the threat symbology. The red chevrons around the track symbol shown indicate the BN’s 
assessment of how much of a threat the track represents to the operator’s own ship.  The BN is capable of 
assessing threat level on a probability scale from 0 to 1, however to simplify the interpretation and 
presentation of this probabilistic data to the operator the threat levels were quantized into 3 levels 
according to the scheme shown below.  

• Low Threat  = 0 to 49% 

• Medium Threat  = 50 to 74% 

• High Threat  = 75 to 100%  

Low threat tracks (0 - 49%) were displayed without ‘threat chevrons’, medium threat tracks (50 – 74%) 
had one ‘threat chevron’ and high threat tracks (75% or greater) had two ‘threat chevrons’ (see Figure 6). 
Therefore, more chevrons mean a greater level of threat.  The quantized percentage level for each track 
was also displayed in the track label.  See Figure 5. 
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Figure 6: Threat Symbology 

3.3 Experimental Task 
 

 

Figure 7: Schematic of Global Operational Context 

The experimental task was for an operator to differentiate and classify air tracks within an air/land/sea 
littoral battlespace, on behalf of a Task Force Commander1.  Using the identification criteria provided, for 
each air track the operator was asked to establish its: ID allegiance or hostility classification, its platform 
ID (type of platform), and the level of threat to the task force flagship posed by the track. 

Figure 7 shows a schematic of the global operational context of the scenarios within which the operators 
were asked to participate during the experiment. It included up to 180 potential enemy air tracks which 
had to be differentiated and classified by the operators.  To prevent learning between the conditions of the 
experiment two versions of the experimental scenario based on the same operational context were 
produced, each with differing timelines to prevent the operators predicting the events. The experimental 

                                                      
1 Other tasks that are typically performed by operators in this role such as track management and communications were not simulated in this 
experiment.  
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scenario was created using a proprietary synthetic environment tool (VR ForcesTM) and this was used to 
drive the command system simulation with which the operators interacted as described in section 3.2. 

3.4 Experimental Design 
The experiment adopted a fully counterbalanced, within subjects design in which the only independent 
variable manipulated was whether the operator had the assistance from the BN decision support system 
(SSA) or not. A total of 14 experienced operators who have performed, or are currently performing air 
picture compilation tasks took part in the experiment.  Of these 11 had a Royal Navy (RN) background 
and 3 had a Royal Air Force (RAF) maritime patrol background. 

Each subject participated in the experiment alone, and on their arrival they were given a full briefing and 
practice session lasting a minimum of 2 hours to minimise any learning effects.   This was followed by 
two experimental runs each of 2 hours in duration separated by a break for lunch.  The participants 
completed the experimental task both with and without the assistance of the BN decision support system.  
The order of presentation of the conditions and scenarios was fully counterbalanced across the subjects.  
Following the experimental runs each subject was debriefed and asked to complete a short questionnaire 
concerning their experiences with the technology. 

Objective Performance Measures included:  

• Time to correctly identify each track’s hostility (ID allegiance) 

• Time to correctly  identify each track’s type (ID Platform) 

• Time taken to respond to (take action against) tracks which posed a threat to the Taskforce 
flagship 

• The number of tracks validated 

Subjective data gathered included: 

• Situation Awareness Ratings (Crew Awareness Rating Scale  (CARS)) 

• Workload ratings (Instantaneous Self Assessment (ISA))  

• Questionnaire responses 

The whole process was also video recorded with a sound track to permit post experiment analysis of 
interesting events. 

3.5 Results 
The relatively large number of experimental participants generated a large amount of data.  Limited space 
prohibits a full presentation of the results of the experiment. The following sections contain a selection of 
the most noteworthy findings. The results are presented under the headings Objective and Subjective 
Measures respectively. 

3.5.1 Objective Measures 

The data collected obtained on the time taken for the operators to respond to a threat. i.e. identify a track 
as a potential threat to the task force flag ship is shown in Figure 8. These data did indicate a potential for 
enhanced operator performance. When using the BN decision support the operators were on average 
almost two minutes (1 min 50 secs) quicker at determining whether an incoming track posed a threat to 
their ship.   This represents an approximately 14% reduction in the time to take action against a potential 
threat compared to when the operators’ interface was not augmented by the BN.  We believe this time 
saving could translate into a significant operational advantage in defensive operations. 
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Figure 8: Average Time taken to Respond to Threats 

However, when considering the average time for the operators to first correctly identify a track’s hostility 
partitioned by time of day as shown in figure 9, we can clearly see that there was a large experimental 
effect due to learning.   
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Figure 9: Average Time to Operator’s First Correct Identification of ID Allegiance (by time of day) 

Subjects were around two and half times faster to achieve correct hostility classifications in the afternoon 
compared to the morning. This was by far the biggest effect seen in the experiment. Somewhat 
unexpectedly these data also indicate that the operators were on average generally slower to achieve a 
correct hostility assessment with the BN decision aid than without it. 

There are a number of hypotheses (which we are yet to fully explore) which might explain these data.  For 
example it seems clear that despite our best efforts the time allowed for training and practise was probably 
insufficient.  Subjects were clearly still learning the task throughout the morning experimental session.  
Perhaps in future more time needs to be allowed to ensure the subjects are at the top of the learning curve.   

Also, we think that despite efforts to give the subjects lots to do by having a large number of tracks, the 
overall workload in the task was too low. This is borne out by the overall workload ratings collected from 
the subjects (see section 3.5.2).  In the absence of ancillary tasks such as track and communications 
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management, the subjects seemed well able to cope with the density of tracks presented, even without a 
decision support system. In fact the BN decision aid may have given them more to think about and do. 

A further hypothesis is that the BN decision aid technology may prove to be more operationally 
advantageous when the operators are required to work harder. In this case they may be more reliant on the 
decision support in order to free up cognitive resources for other tasks.  It would be interesting to repeat 
the experiment and manipulate the level of workload to see the effects on performance. 

Finally it was recognised that there were aspects of both the implementation of the SSA HMI and the 
underlying BN which were less than optimal and may have introduced additional tasks. 
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Figure 10: Number of Correct Platform ID Classifications 

The final quantitative data to consider shows the average number of tracks for which operators were able 
to provide a level 3 or higher platform classification. Level 1 is the basic platform identification which 
identifies the track as an air or surface track. Level 2 delineates between military, civilian and missile 
tracks. At level 3 the operator makes decisions concerning the type of air vehicle represented by the track 
such as whether it’s a fixed or rotary wing aircraft.  Level 4 is concerned with the role of the aircraft such 
as Bomber or fighter etc. In our experiment the subjects were able to correctly classify approx 14.5% more 
tracks to level 3 or above when using the BN decision support compared to the unaided condition.  It 
seems therefore that the operators may have a more detailed or deeper awareness of the real state of the 
world when using the BN decision aid technology compared to the unaided condition. 

3.6 Subjective Measures 
Considering the instantaneous Self Assessment (ISA) workload scores there were no discernable 
differences between the experimental conditions in terms of median workload score.  The overall task 
workload was shown to be very low.  Both conditions were rated on average as 2 on a scale of 0 to 5. 
When the workload profiles over time for the two conditions are we can see that they were highly 
correlated (r=0.84, N=41).   

Similar results were found for operators’ ratings of their situation awareness (SA) using the Crew 
Awareness Rating Scale (CARS).  There was only one minor discernable difference in the SA profiles for 
the two experimental conditions.  From these data we can perhaps conclude that at least the introduction of 
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the BN decision support technology seemed to have no measurable negative impact in terms of operator 
workload or SA. 

3.6.1 Extracts from Questionnaire Results 

The first finding relates to the operators’ views on how the BN came up with its recommendations. Figure 
11 illustrates that the majority of subjects (64%) reported that they understood how the BN was making its 
decisions.  This in turn seemed to reinforce the trust that the operators were prepared to invest in the 
systems’ recommendations.  

2.7.  I always understood how the SSA system came up with its recommendations.
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Figure 11:  “I Always understood the SSA recommendations” 

When required to make a choice, 79% (11 out of 14) of our subjects said they preferred the BN decision 
aid system over the non-augmented interface (see Figure 12).  

3.5.     Which system did you prefer, SSA or No SSA?
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Figure 12  “Which system did you prefer?”  
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Overall the operators’ opinions of the augmented system were generally positive. Examples of operators’ 
comments included:   

• “…Platform change suggestions + threat recommendations were all very useful. SSA has good 
potential.” 

• “Less thought required (with SSA). More time to concentrate on the tactical environment, i.e. 
Track(s) release to data links, etc.” 

• “It was good to have a computer that thinks for you and is there to help, not just do!” 

• “Allows you to leave less important track investigation till later.  Gives immediate heads-up on 
possible hostiles.” 

•  “In many aspects, it is better to be presented with a solution which can be vetoed, rather than 
trying to find the answers.  

• “Having advice based on objective criteria provided reassurance about classification decisions 
and made the decisions quicker to take…” 

3.7 Summary of Experimental Findings 
Whilst not all measures showed a benefit resulting from the use of the BN decision support system, (SSA) 
the results obtained did indicate a clear potential for enhanced operator performance, in terms of a 14% 
reduction in the time required to take action against a possible threat when the operators’ interface was 
augmented by the SSA.  This could translate into improved operational effectiveness in defensive 
operations.  

The ‘time to first correct allegiance decision’ data showed no performance advantage from the addition of 
the BN decision aid technology.  The operators were on average slightly slower to achieve a correct ID 
allegiance with SSA than when it was not available to them.  This could be due to the requirement to 
verify the BN’s suggestions prior to making a response, which is an addition to the operator’s task when 
compared to the unaugmented condition.  The operators’ lack of familiarity with the system may 
exacerbate this.  Alternatively, operators may have been more content to leave the system alone when a 
BN generated advisory was displayed.   

There is also evidence that operators had a more complete picture with respect to platform type 
classification, whilst using the BN decision aid.  Without it, on average, operators were able to identify 
fewer tracks in terms of platform type.   With it, they were more likely to correctly identify platform and 
achieve a more detailed level of platform identification. This indicates that the subjects may have a deeper 
awareness of the real state of the world when using the SSA system which could be operationally 
significant. 

The analysis of subjective workload data indicated no differences between the conditions in the 
experiment.  Hence the introduction of the SSA did not result in a perceived increase in workload by the 
operators as may have been expected.  The operators’ perceived level of situation awareness also showed 
no difference between the conditions.  These findings are possibly a function of the low workload imposed 
by the operational task, which was so low that the subjects were easily “on top of the operational 
situation” even without assistance from the SSA.   This low task workload may have also accounted for 
the lack of the expected advantage for the SSA technology in terms of time to correctly identify hostility.  

The post-experiment questionnaire revealed that the operators’ opinions about the technology were 
generally positive. The majority of participants understood the decisions made by the SSA, however, they 
did not necessarily agree with them.  This may be because the SSA did not account for historical track 
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behaviour. Further work is recommended to address this issue.   The majority of subjects did approve of 
the SSA’s means of presentation, and 79% preferred the SSA system compared to the un augmented 
system.   

A significant body of opinion about the design and operation of the CNS, the SSA tool and the HMI 
implementation was also gathered which will be valuable in any future development of these technologies. 

In summary, the subjects thought that the BN decision aid assisted their performance on the task.  They 
acknowledged some problems with the implementation of the system, but notwithstanding these issues 
they overwhelmingly preferred it and recognised the potential benefits to be accrued from its use 
following further refinement of the BN and HMI.  

4.0 SUMMARY 

The future battlespace implies an increasing need for decision support technologies. BAE Systems has 
developed high level fusion technology based on Bayesian Networks that can support human decision 
processes in a NEC environment. We have described an experiment in which we assessed a Bayes Net 
decision support application in a naval command and control task.  The experiment described was 
conducted in a realistic, simulated, naval scenario and has demonstrated some potential performance 
benefits for this technology in operational effectiveness terms.   

This exercise although specific to the naval domain has illuminated many challenging systems engineering 
and implementation issues which remain to be addressed prior to wider acceptance of this technology in 
military command and control applications. Issues include understanding the role of the human and his/her 
means of interaction with the system.  An effective solution to this challenge was implemented for the 
experiment described, however it is apparent that for the user to gain the full benefits which can accrue 
from the use of such systems, interface designs which will allow the operator to access, assimilate, 
understand and act upon the full richness of the probabilistic information available need to be further 
investigated.  In conjunction, techniques need to be developed to allow the underlying BN to take account 
of the historical pattern of information relating to tracks and to present this to the user in an appropriate 
manner. Other challenges discussed include the validation and verification of probabilistic inference 
systems and the integration of such systems with information systems and network technologies which 
currently have little or any notion of uncertain data. 
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